Example of Nonparametric Growth Curve
main topic
     interpreting results      session command     see also
 

You want to compare two different types of a particular brake component used on a subway train. Your data include replacement times and component type for 29 trains. The final time for each train is the final failure for that train.

1    Open the worksheet TRAIN.MTW.

2    Choose Stat > Reliability/Survival > Repairable System Analysis > Nonparametric Growth Curve.

3    In Variables/Start variables, enter Days.

4    Under System Information, choose System ID, then enter ID.

5    Check By variable, then enter Type.

6    Click OK.

Session window output

Nonparametric Growth Curve:  Days

 

 

Results for Type = 1

 

 

System:  ID

 

Nonparametric Estimates

 

 

Table of Mean Cumulative Function

 

            Mean

      Cumulative  Standard    95% Normal CI

Time    Function     Error    Lower    Upper  System

  33     0.07143  0.068830  0.01081  0.47218     179

  88     0.14286  0.093522  0.03960  0.51540     132

 250     0.21429  0.109664  0.07859  0.58426     128

 272     0.28571  0.120736  0.12481  0.65408     137

 287     0.35714  0.128060  0.17686  0.72120     181

 302     0.42857  0.132260  0.23407  0.78471     119

 317     0.50000  0.133631  0.29613  0.84423     182

 364     0.57143  0.132260  0.36303  0.89945     112

 367     0.64286  0.128060  0.43506  0.94990     167

 391     0.71429  0.157421  0.46374  1.10019     112

 402     0.78571  0.149098  0.54168  1.13970     175

 421     0.85714  0.170747  0.58008  1.26653     137

 431     0.92857  0.158574  0.66444  1.29771     155

 444     1.00000  0.174964  0.70969  1.40906     119

 462     1.07143  0.158574  0.80165  1.43200     101

 481     1.14286  0.137661  0.90253  1.44718     145

 498     1.21429  0.149098  0.95456  1.54468     182

 500     1.28571  0.187044  0.96675  1.70992     119

 500     1.35714  0.191853  1.02872  1.79042     128

 548     1.42857  0.219328  1.05735  1.93013     112

 552     1.50000  0.242226  1.09304  2.05848     137

 625     1.57143  0.280566  1.10744  2.22982     137

 635     1.64286  0.259653  1.20522  2.23940     169

 650     1.71429  0.256120  1.27912  2.29750     169

 657     1.78571  0.270649  1.32679  2.40338     182

 687     1.86264  0.266655  1.40692  2.46596     179

 687     1.93956  0.260862  1.49012  2.52456     181

 700     2.03047  0.254826  1.58771  2.59671     175

 708     2.13047  0.274527  1.65498  2.74258     169

 710     2.24158  0.268755  1.77214  2.83537     145

 710     2.35269  0.257586  1.89833  2.91581     155

 710     2.46380  0.240267  2.03516  2.98273     167

 719     2.63047  0.347216  2.03084  3.40714     137

 724     2.83047  0.425594  2.10800  3.80055     112

 724     3.03047  0.443994  2.27405  4.03849     128

 724     3.23047  0.410559  2.51818  4.14424     132

 730     3.73047  0.471307  2.91221  4.77864     101

 730     4.23047  0.410559  3.49769  5.11677     119

 

 

Results for Type = 2

 

 

System:  ID

 

Nonparametric Estimates

 

 

Table of Mean Cumulative Function

 

            Mean

      Cumulative  Standard    95% Normal CI

Time    Function     Error    Lower    Upper  System

  19     0.06667  0.064406  0.01004  0.44284     228

  22     0.13333  0.087771  0.03670  0.48447     212

  39     0.20000  0.103280  0.07269  0.55029     192

  54     0.26667  0.114180  0.11521  0.61721     214

  61     0.33333  0.121716  0.16295  0.68186     219

  91     0.40000  0.157762  0.18465  0.86652     192

  93     0.46667  0.159629  0.23869  0.91237     243

 119     0.53333  0.207989  0.24834  1.14538     192

 148     0.60000  0.263312  0.25386  1.41809     192

 173     0.66667  0.261052  0.30945  1.43622     190

 185     0.73333  0.274334  0.35227  1.52661     228

 187     0.80000  0.269979  0.41289  1.55006     235

 192     0.86667  0.264435  0.47658  1.57604     205

 194     0.93333  0.257624  0.54335  1.60321     216

 203     1.00000  0.249444  0.61330  1.63052     183

 205     1.06667  0.257624  0.66442  1.71243     243

 211     1.13333  0.264435  0.71738  1.79046     183

 242     1.20000  0.269979  0.77210  1.86504     190

 250     1.26667  0.257624  0.85023  1.88706     204

 264     1.33333  0.277555  0.88664  2.00507     243

 277     1.40000  0.295146  0.92615  2.11630     183

 293     1.46667  0.280740  1.00786  2.13434     184

 306     1.53333  0.324779  1.01238  2.32237     192

 369     1.60000  0.309839  1.09468  2.33859     206

 373     1.66667  0.335548  1.12325  2.47298     183

 382     1.73333  0.319258  1.20810  2.48693     200

 415     1.80000  0.342540  1.23962  2.61370     243

 416     1.87143  0.340512  1.31007  2.67333     235

 419     1.94835  0.338097  1.38662  2.73764     219

 419     2.02527  0.349310  1.44435  2.83985     228

 432     2.11618  0.347441  1.53391  2.91948     216

 434     2.21618  0.345034  1.63337  3.00696     204

 441     2.32729  0.341839  1.74512  3.10369     214

 447     2.45229  0.337430  1.87262  3.21141     212

 448     2.59515  0.331033  2.02109  3.33227     205

 448     2.73801  0.315398  2.18466  3.43152     206

 460     2.93801  0.298009  2.40832  3.58420     200

 461     3.18801  0.449834  2.41776  4.20364     192

 464     3.52134  0.511478  2.64893  4.68108     190

 503     4.02134  0.535360  3.09778  5.22025     184

 511     5.02134  0.535360  4.07443  6.18831     183

 

 

Comparisons for Days

 

 

Comparison: (Type = 1) - (Type = 2)

 

 

Table of Mean Cumulative Difference Function

 

      Mean Cumulative

           Difference  Standard     95% Normal CI

Time         Function     Error     Lower     Upper

  19         -0.06667  0.064406  -0.19290   0.05957

  22         -0.13333  0.087771  -0.30536   0.03869

  33         -0.06190  0.111541  -0.28052   0.15671

  39         -0.12857  0.124114  -0.37183   0.11469

  54         -0.19524  0.133322  -0.45654   0.06607

  61         -0.26190  0.139830  -0.53597   0.01216

  88         -0.19048  0.153496  -0.49132   0.11037

  91         -0.25714  0.183399  -0.61660   0.10231

  93         -0.32381  0.185008  -0.68642   0.03880

 119         -0.39048  0.228047  -0.83744   0.05649

 148         -0.45714  0.279427  -1.00481   0.09052

 173         -0.52381  0.277299  -1.06730   0.01969

 185         -0.59048  0.289837  -1.15855  -0.02241

 187         -0.65714  0.285719  -1.21714  -0.09714

 192         -0.72381  0.280486  -1.27355  -0.17407

 194         -0.79048  0.274074  -1.32765  -0.25330

 203         -0.85714  0.266399  -1.37928  -0.33501

 205         -0.92381  0.274074  -1.46099  -0.38663

 211         -0.99048  0.280486  -1.54022  -0.44073

 242         -1.05714  0.285719  -1.61714  -0.49714

 250         -1.05238  0.279994  -1.60116  -0.50360

 264         -1.11905  0.298435  -1.70397  -0.53413

 272         -1.04762  0.302679  -1.64086  -0.45438

 277         -1.11429  0.318886  -1.73929  -0.48928

 287         -1.04286  0.321731  -1.67344  -0.41228

 293         -1.10952  0.308568  -1.71431  -0.50474

 302         -1.03810  0.310335  -1.64634  -0.42985

 306         -1.10476  0.350677  -1.79208  -0.41745

 317         -1.03333  0.351196  -1.72166  -0.34500

 364         -0.96190  0.350677  -1.64922  -0.27459

 367         -0.89048  0.349114  -1.57473  -0.20622

 369         -0.95714  0.335260  -1.61424  -0.30004

 373         -1.02381  0.359155  -1.72774  -0.31988

 382         -1.09048  0.343985  -1.76467  -0.41628

 391         -1.01905  0.355960  -1.71672  -0.32138

 402         -0.94762  0.352358  -1.63823  -0.25701

 415         -1.01429  0.373582  -1.74649  -0.28208

 416         -1.08571  0.371724  -1.81428  -0.35715

 419         -1.23956  0.379800  -1.98395  -0.49517

 421         -1.16813  0.388808  -1.93018  -0.40608

 431         -1.09670  0.383618  -1.84858  -0.34482

 432         -1.18761  0.381917  -1.93616  -0.43907

 434         -1.28761  0.379729  -2.03187  -0.54336

 441         -1.39872  0.376828  -2.13729  -0.66015

 444         -1.32729  0.384013  -2.07995  -0.57464

 447         -1.45229  0.380094  -2.19726  -0.70733

 448         -1.73801  0.360677  -2.44492  -1.03109

 460         -1.93801  0.345574  -2.61532  -1.26070

 461         -2.18801  0.482663  -3.13401  -1.24201

 462         -2.11658  0.476966  -3.05142  -1.18174

 464         -2.44991  0.535496  -3.49947  -1.40036

 481         -2.37849  0.529680  -3.41664  -1.34033

 498         -2.30706  0.532767  -3.35126  -1.26285

 500         -2.16420  0.546276  -3.23488  -1.09352

 503         -2.66420  0.568698  -3.77883  -1.54957

 511         -3.66420  0.568698  -4.77883  -2.54957

 548         -3.59277  0.578546  -4.72670  -2.45884

 552         -3.52134  0.587608  -4.67303  -2.36965

 625         -3.44991  0.604423  -4.63456  -2.26527

 635         -3.37849  0.595004  -4.54467  -2.21230

 650         -3.30706  0.593471  -4.47024  -2.14387

 657         -3.23563  0.599884  -4.41138  -2.05988

 687         -3.08178  0.595533  -4.24900  -1.91456

 700         -2.99087  0.592914  -4.15296  -1.82878

 708         -2.89087  0.601644  -4.07007  -1.71167

 710         -2.55754  0.586803  -3.70765  -1.40743

 719         -2.39087  0.638098  -3.64152  -1.14022

 724         -1.79087  0.674662  -3.11319  -0.46856

 730         -0.79087  0.674662  -2.11319   0.53144

Graph window output

Interpreting the results

Minitab displays nonparametric estimates of the mean cumulative function and its corresponding standard error and confidence limits separately for each group. For example, the mean cumulative function is 0.07143 at 33 days for the first type of train. You can be 95% confident that the true mean cumulative function is between 0.01081 and 0.47218.

Use the mean cumulative difference function to make comparisons across groups. For example, type 2 trains had, on average, 0.06667 more failures at 19 days. Because all of the confidence intervals contain zero, no significant differences exist in the mean cumulative difference function between groups at any given time.

The event plot shows when the failures occurred for each system. Each line extends to the last day of observation. Use this plot to visualize trends within and across groups. Here, system failures are occurring at a constant rate. The first failures occur slightly earlier for the type 1 trains.

The mean cumulative function plot displays the mean cumulative function for each group. From this plot, you can conclude that:

·    The line representing type 2 trains is relatively straight, not curved, up until around 450 days, indicating that the failure rate is remaining relatively constant until that point

·    The line representing type 1 trains is slightly concave up, indicating that the failure rate is slightly increasing

·    The line representing type 1 trains is to the right of the line representing type 2 trains, indicating that failures are occurring less often for type 1 trains