An observation is classified into a group if the squared distance (also called the Mahalanobis distance) of observation to the group center (mean) is the minimum. An assumption is made that covariance matrices are equal for all groups. There is a unique part of the squared distance formula for each group and that is called the linear discriminant function for that group. For any observation, the group with the smallest squared distance has the largest linear discriminant function and the observation is then classified into this group.
Linear discriminant analysis has the property of symmetric squared distance: the linear discriminant function of group i evaluated with the mean of group j is equal to the linear discriminant function of group j evaluated with the mean of group i.
We have described the simplest case, no priors and equal covariance matrices. If you consider Mahalanobis distance a reasonable way to measure the distance of an observation to a group, then you do not need to make any assumptions about the underlying distribution of your data.
See Prior Probabilities for more information.