Example of Fitted Regression Line
main topic
     interpreting results     session command     see also 

You are studying the relationship between a particular machine setting and the amount of energy consumed. This relationship is known to have considerable curvature, and you believe that a log transformation of the response variable will produce a more symmetric error distribution. You choose to model the relationship between the machine setting and the amount of energy consumed with a quadratic model.

1    Open the worksheet EXH_REGR.MTW.

2    Choose Stat > Regression > Fitted Line Plot.

3    In Response (Y), enter EnergyConsumption.

4    In Predictor (X), enter MachineSetting.

5    Under Type of Regression Model, choose Quadratic.

6    Click Options. Under Transformations, check Logten of Y and Display logscale for Y variable. Under Display Options, check Display confidence interval and Display prediction interval. Click OK in each dialog box.

Session window output

Polynomial Regression Analysis: EnergyConsumption versus MachineSetting

 

 

The regression equation is

log10(EnergyConsumption) = 7.070 - 0.6986 MachineSetting + 0.01740 MachineSetting^2

 

 

S = 0.167696   R-Sq = 93.1%   R-Sq(adj) = 91.1%

 

 

Analysis of Variance

 

Source      DF       SS       MS      F      P

Regression   2  2.65326  1.32663  47.17  0.000

Error        7  0.19685  0.02812

Total        9  2.85012

 

 

Sequential Analysis of Variance

 

Source     DF       SS      F      P

Linear      1  0.03688   0.10  0.754

Quadratic   1  2.61638  93.04  0.000

 

 

Fitted Line: EnergyConsumption versus MachineSetting

Graph window output

Interpreting the results

The quadratic model (p-value = 0.000, or actually p-value < 0.0005) appears to provide a good fit to the data. The R indicates that machine setting accounts for 93.1% of the variation in log10 of the energy consumed. A visual inspection of the plot reveals that the data are randomly spread about the regression line, implying no systematic lack-of-fit. The 95% confidence limits (95% CI) for the log10 of energy consumed and the 95% prediction limits (95% PI) for new observations are also shown.