Example of stepwise regression
main topic
     interpreting results     session command    
see also 

Students in an introductory statistics course participated in a simple experiment. Each student recorded his or her height, weight, gender, smoking preference, usual activity level, and resting pulse. They all flipped coins, and those whose coins came up heads ran in place for one minute. Afterward, the entire class recorded their pulses once more. You wish to find the best predictors for the second pulse rate.

1    Open the worksheet PULSE.MTW.

2    Choose Stat > Regression > Regression > Fit Regression Model.

3    In Responses, enter Pulse2.

4    In Continuous predictors, enter Pulse1 Ran-Weight.

5    Click Stepwise.

6    Under Method, choose Stepwise.

7    Check Display the table of model selection details and choose Include details for each step.

8    Click OK in each dialog box.

Session window output

Regression Analysis: Pulse2 versus Pulse1, Ran, Smokes, Sex, Height, Weight

 

 

Stepwise Selection of Terms

 

Candidate terms: Pulse1, Ran, Smokes, Sex, Height, Weight

 

             ----Step 1----    -----Step 2----    -----Step 3----

              Coef        P      Coef        P      Coef        P

Constant     10.28              44.48              42.62

Pulse1       0.957    0.000    0.9125    0.000    0.8122    0.000

Ran                            -19.12    0.000    -20.07    0.000

Sex                                                 7.75    0.000

 

S                   13.5375            9.82193            9.17509

R-sq                 37.97%             67.71%             72.14%

R-sq(adj)            37.28%             66.98%             71.19%

R-sq(pred)           35.12%             65.01%             69.18%

Mallows’ Cp          103.22              13.54               1.88

 

α to enter = 0.15, α to remove = 0.15

 

 

Analysis of Variance

 

Source         DF   Adj SS   Adj MS  F-Value  P-Value

Regression      3  19182.0  6393.98    75.95    0.000

  Pulse1        1   6631.7  6631.66    78.78    0.000

  Ran           1   8569.0  8568.95   101.79    0.000

  Sex           1   1177.8  1177.80    13.99    0.000

Error          88   7408.0    84.18

  Lack-of-Fit  87   7400.0    85.06    10.63    0.240

  Pure Error    1      8.0     8.00

Total          91  26590.0

 

 

Model Summary

 

      S    R-sq  R-sq(adj)  R-sq(pred)

9.17509  72.14%     71.19%      69.18%

 

 

Coefficients

 

Term        Coef  SE Coef  T-Value  P-Value   VIF

Constant   42.62     7.36     5.79    0.000

Pulse1    0.8122   0.0915     8.88    0.000  1.10

Ran       -20.07     1.99   -10.09    0.000  1.02

Sex         7.75     2.07     3.74    0.000  1.11

 

 

Regression Equation

 

Pulse2 = 42.62 + 0.8122 Pulse1 - 20.07 Ran + 7.75 Sex

 

 

Fits and Diagnostics for Unusual Observations

 

Obs  Pulse2     Fit   Resid  Std Resid

 10  118.00   92.03   25.97       2.88  R

 13   84.00  105.02  -21.02      -2.38  R

 16   58.00   80.66  -22.66      -2.52  R

 21  106.00   87.15   18.85       2.09  R

 23  102.00   83.91   18.09       2.01  R

 25  140.00  116.02   23.98       2.73  R

 30  112.00   93.28   18.72       2.11  R

 35  128.00  103.03   24.97       2.79  R

 

R  Large residual

Interpreting the results

This example uses six predictors. In step 1, the variable Pulse1 entered the model. In step 2, the variable Ran entered. Finally, for step 3, the variable Sex entered the model. No variables were removed during any of the steps. At this point, no more variables could enter or leave, so the automatic procedure stopped.

For each model, Minitab displays the constant term, the coefficient and its p-value for each variable in the model, S (square root of MSE), and Rimage\SQUARED.gif, adjusted Rimage\SQUARED.gif, predicted Rimage\SQUARED.gif, and Mallows' Cp.

The stepwise model selection output is designed to present a concise summary of a number of fitted models. This table is followed by the full regression output for the procedure's final model. For this example, the full regression output corresponds to the model in step 3.

If you want more information on interpreting a regression model, see the other regression examples.