In all cases, the standardized values (Z) are obtained by:
Z = (X - m) / s
where m is the overall mean for a particular part, and s is the estimate of the process standard deviation for each X. The estimate of s depends on the method chosen.
When you choose the Relative to size (combine all observations, use log) option for estimating s, X is the natural log of the data.
The following table shows how the Z-values vary depending on the method chosen to estimate s:
Run # |
Fiber # |
Thickness |
Mean |
Constant Z |
Relative to size Z |
By Parts Z |
By Runs Z |
1 |
134 |
1.435 |
1.5015 |
-0.9288 |
-0.9674 |
-0.9554 |
-0.6731 |
1 |
134 |
1.572 |
1.5015 |
0.9846 |
1.0022 |
1.0129 |
0.7136 |
1 |
134 |
1.486 |
1.5015 |
-0.2165 |
-0.2131 |
-0.2227 |
-0.1569 |
2 |
221 |
1.883 |
1.7847 |
1.3729 |
1.1774 |
1.1973 |
0.8800 |
2 |
221 |
1.715 |
1.7847 |
-0.9735 |
-0.8518 |
-0.8490 |
-0.6240 |
2 |
221 |
1.799 |
1.7847 |
0.1997 |
0.1865 |
0.1742 |
0.1280 |
3 |
134 |
1.511 |
1.5015 |
0.1327 |
0.1473 |
0.1365 |
0.1477 |
3 |
134 |
1.457 |
1.5015 |
-0.6215 |
-0.6388 |
-0.6394 |
-0.6921 |
3 |
134 |
1.548 |
1.5015 |
0.6494 |
0.6698 |
0.6681 |
0.7232 |
4 |
221 |
1.768 |
1.7847 |
-0.2332 |
-0.1909 |
-0.2034 |
-0.2117 |
4 |
221 |
1.711 |
1.7847 |
-1.0293 |
-0.9024 |
-0.8977 |
-0.9341 |
4 |
221 |
1.832 |
1.7847 |
0.6606 |
0.5812 |
0.5761 |
0.5995 |
5 |
077 |
1.427 |
1.3883 |
0.5405 |
0.5529 |
0.6104 |
0.6104 |
5 |
077 |
1.344 |
1.3883 |
-0.6187 |
-0.7520 |
-0.6987 |
-0.6987 |
5 |
077 |
1.404 |
1.3883 |
0.2193 |
0.1991 |
0.2476 |
0.2476 |