威布尔分析及各种删失数据处理
我们平时开展可靠性数据分析、威布尔分析工作时,主要遇到的数据类型包括完全数据/确切失效数据、右删失数据(包括I型和II型,也有一些资料提到III型)、左删失数据、间隔/区间删失数据、批量删失数据、成组删失数据、零失效数据等。开展可靠性数据分析或者威布尔分析工作时,对于包含删失数据的数据处理工作较为复杂,一般可以借助相应的工具(PosWeibull等)进行。对于包含删失数据的可靠性分析,一般可以选择使用最小二乘法(RRX、RRY)、极大似然法进行。需要注意的是,当删失数据较多时,建议选择极大似然法进行分析。
例如汽车部件故障数据(右删失和区间删失数据混合)
现在对新旧两个系列的汽车部件失效数据进行可靠性分析。并估计未来50000公里的返修比例。新旧两个系列的产品每隔10000公里进行一次失效检测。新旧两类产品分别检测了90000公里,每隔10000公里进行检测。
其中旧产品第一次检测是不知道具体开始时间的(左删失),90000公里后还有83个样品是未失效的(即右删失),有965个样品是区间删失的,即只知道开始和结束检测时间,但是不知道具体失效时间。
新产品第一次检测是不知道具体开始时间的(左删失),且所有被检测产品均没有发生失效,90000公里后还有210个样品是未失效的(即右删失),有829个样品是区间删失的,即只知道开始和结束检测时间,但是不知道具体失效时间。
对于这种即存在左删失、右删失,又存在区间删失的多种删失数据、任意删失、大批量删失数据的可靠性分析,首先按照开始检测时间、结束检测时间、故障数量/频数、产品类型(新/旧)对检测数据进行梳理、整理。
将整理的数据录入到工具软件中,使用寿命分析工具进行分析。 本帖最后由 myview 于 2022-12-14 14:26 编辑
中位秩回归可以很好的适应多重复杂删失的处置 1号去佛山上班,卡哇伊 :) 谢谢分享!!! 谢谢分享!!! {:1_89:} 感恩分享 谢谢分享 谢谢分享 谢谢分享 谢谢分享!!!