Suppose you need to determine the proportions of flour, milk, baking powder, eggs, and oil in a pancake mix that would produce an optimal product based on taste. Because previous experimentation suggests that a mix that does not contain all of the ingredients or has too much baking powder will not meet the taste requirements, you decide to constrain the design by setting lower bounds and upper bounds.
You decide that quadratic model will sufficiently model the response surface, so you decide to create a second-degree design.
1 Choose Stat > DOE > Mixture > Create Mixture Design.
2 Under Type of Design, choose Extreme vertices.
3 From Number of components, choose 5.
4 Click Designs. From Degree of design, choose 2.
5 Make sure Augment the design with center point and Augment the design with axial points are checked. Click OK.
6 Click Components. Complete the Name, Lower, and Upper columns of the table as shown below, then click OK.
Component |
Name |
Lower |
Upper |
A |
Flour |
.425 |
1 |
B |
Milk |
.30 |
1 |
C |
Baking powder |
.025 |
.05 |
D |
Eggs |
.10 |
1 |
E |
Oil |
.10 |
1 |
7 Click Results. Choose Detailed description and design table. Click OK in each dialog box.
Session window output
Extreme Vertices Design
Components: 5 Design points: 33 Process variables: 0 Design degree: 2
Mixture total: 1.00000
Number of Boundaries for Each Dimension
Point Type 1 2 3 4 0 Dimension 0 1 2 3 4 Number 8 16 14 6 1
Number of Design Points for Each Type
Point Type 1 2 3 4 5 0 -1 Distinct 8 16 0 0 0 1 8 Replicates 1 1 0 0 0 1 1 Total number 8 16 0 0 0 1 8
Bounds of Mixture Components
Amount Proportion Pseudocomponent Comp Lower Upper Lower Upper Lower Upper A 0.425000 0.475000 0.425000 0.475000 0.000000 1.000000 B 0.300000 0.350000 0.300000 0.350000 0.000000 1.000000 C 0.025000 0.050000 0.025000 0.050000 0.000000 0.500000 D 0.100000 0.150000 0.100000 0.150000 0.000000 1.000000 E 0.100000 0.150000 0.100000 0.150000 0.000000 1.000000
* NOTE * Bounds were adjusted to accommodate specified constraints.
Design Table (randomized)
Run Type A B C D E 1 1 0.425000 0.300000 0.050000 0.100000 0.125000 2 2 0.437500 0.300000 0.050000 0.112500 0.100000 3 -1 0.429687 0.329687 0.031250 0.104688 0.104688 4 2 0.450000 0.300000 0.025000 0.125000 0.100000 5 2 0.425000 0.300000 0.025000 0.125000 0.125000 6 2 0.425000 0.325000 0.025000 0.125000 0.100000 7 2 0.462500 0.300000 0.037500 0.100000 0.100000 8 1 0.425000 0.300000 0.025000 0.150000 0.100000 9 2 0.425000 0.312500 0.050000 0.100000 0.112500 10 2 0.425000 0.337500 0.037500 0.100000 0.100000 11 -1 0.429687 0.304688 0.043750 0.117188 0.104688 12 2 0.425000 0.300000 0.050000 0.112500 0.112500 13 -1 0.429687 0.304688 0.031250 0.104688 0.129688 14 2 0.450000 0.325000 0.025000 0.100000 0.100000 15 2 0.425000 0.312500 0.050000 0.112500 0.100000 16 2 0.437500 0.312500 0.050000 0.100000 0.100000 17 -1 0.429687 0.304688 0.031250 0.129688 0.104688 18 0 0.434375 0.309375 0.037500 0.109375 0.109375 19 -1 0.454687 0.304688 0.031250 0.104688 0.104688 20 1 0.425000 0.325000 0.050000 0.100000 0.100000 21 2 0.437500 0.300000 0.050000 0.100000 0.112500 22 1 0.425000 0.300000 0.050000 0.125000 0.100000 23 2 0.425000 0.300000 0.037500 0.137500 0.100000 24 2 0.425000 0.300000 0.037500 0.100000 0.137500 25 1 0.425000 0.300000 0.025000 0.100000 0.150000 26 -1 0.429687 0.304688 0.043750 0.104688 0.117188 27 2 0.425000 0.325000 0.025000 0.100000 0.125000 28 -1 0.442187 0.304688 0.043750 0.104688 0.104688 29 -1 0.429687 0.317188 0.043750 0.104688 0.104688 30 1 0.475000 0.300000 0.025000 0.100000 0.100000 31 1 0.450000 0.300000 0.050000 0.100000 0.100000 32 1 0.425000 0.350000 0.025000 0.100000 0.100000 33 2 0.450000 0.300000 0.025000 0.100000 0.125000 |
Minitab creates an augmented five-component extreme vertices design. The base design provides 24 design points; augmentation adds 9 design points for a total of 33 runs. Augmenting this design adds 8 axial points and 1 center point to the design.
Because you chose to display the summary and data tables, Minitab shows the component proportions you will use to create 33 blends of your mixture. When you perform the experiment, use the blends in the run order that is shown. (Because you did not change the mixture total from the default of one, Minitab expresses each component in proportions.)
Minitab randomizes the design by default, so if you try to replicate this example, your run order may not match the order shown.