Example of a static Taguchi design
main topic
     interpreting results     session command     see also  

You manufacture golf balls and are working on a new design to maximize ball flight distance. You have identified four control factors, each with two levels:

·    Core material (liquid vs. tungsten)

·    Core diameter (118 vs. 156)

·    Number of dimples (392 vs. 422)

·    Cover thickness (.03 vs. .06)

You also want to test the interaction between core material and core diameter.   

The response is ball flight distance in feet. The noise factor is two types of golf clubs: driver and a 5-iron. You measure distance for each club type, resulting in two noise factor columns in the worksheet. Because your goal is to maximize flight distance, you select the larger-is-better signal-to-noise (S/N) ratio.

1    Open the worksheet GOLFBALL.MTW. The design and response data have been saved for you.

2    Choose Stat > DOE > Taguchi > Analyze Taguchi Design.

3    In Response data are in, enter Driver and Iron.

4    Click Analysis.

5    Under Fit linear model for, check Signal-to-noise ratios and Means. Click OK.

6    Click Terms.

7    Verify that A:Material, B:Diameter, C:Dimples, D:Thickness, and AB are in Selected Terms. Click OK.

8    Click Options.

9    Under Signal to Noise Ratio, choose Larger is better. Click OK in each dialog box.

Session window output

Taguchi Analysis: Driver, Iron versus Material, Diameter, Dimples, Thickness

 

 

Linear Model Analysis: SN ratios versus Material, Diameter, Dimples, Thickness

 

 

Estimated Model Coefficients for SN ratios

 

Term                            Coef  SE Coef       T      P

Constant                      38.181   0.4523  84.418  0.000

Material Liquid                3.436   0.4523   7.596  0.017

Diameter 118                   3.967   0.4523   8.772  0.013

Dimples 392                    2.982   0.4523   6.593  0.022

Thicknes 0.03                 -3.479   0.4523  -7.692  0.016

Material*Diameter Liquid 118   1.640   0.4523   3.625  0.068

 

S = 1.279   R-Sq = 99.2%   R-Sq(adj) = 97.2%

 

 

Analysis of Variance for SN ratios

 

Source             DF   Seq SS   Adj SS   Adj MS      F      P

Material            1   94.427   94.427   94.427  57.70  0.017

Diameter            1  125.917  125.917  125.917  76.94  0.013

Dimples             1   71.133   71.133   71.133  43.47  0.022

Thickness           1   96.828   96.828   96.828  59.17  0.016

Material*Diameter   1   21.504   21.504   21.504  13.14  0.068

Residual Error      2    3.273    3.273    1.637

Total               7  413.083

 

 

 

 

Linear Model Analysis: Means versus Material, Diameter, Dimples, Thickness

 

 

Estimated Model Coefficients for Means

 

Term                            Coef  SE Coef       T      P

Constant                      110.40    8.098  13.634  0.005

Material Liquid                36.86    8.098   4.552  0.045

Diameter 118                   51.30    8.098   6.335  0.024

Dimples 392                    23.25    8.098   2.871  0.103

Thicknes 0.03                 -22.84    8.098  -2.820  0.106

Material*Diameter Liquid 118   31.61    8.098   3.904  0.060

 

S = 22.90   R-Sq = 97.9%   R-Sq(adj) = 92.6%

 

 

Analysis of Variance for Means

 

Source             DF  Seq SS  Adj SS   Adj MS      F      P

Material            1   10871   10871  10870.8  20.72  0.045

Diameter            1   21054   21054  21053.5  40.13  0.024

Dimples             1    4325    4325   4324.5   8.24  0.103

Thickness           1    4172    4172   4172.4   7.95  0.106

Material*Diameter   1    7995    7995   7994.8  15.24  0.060

Residual Error      2    1049    1049    524.6

Total               7   49465

 

 

 

 

Response Table for Signal to Noise Ratios

Larger is better

 

Level  Material  Diameter  Dimples  Thickness

1         41.62     42.15    41.16      34.70

2         34.75     34.21    35.20      41.66

Delta      6.87      7.93     5.96       6.96

Rank          3         1        4          2

 

 

Response Table for Means

 

Level  Material  Diameter  Dimples  Thickness

1        147.26    161.70   133.65      87.56

2         73.54     59.10    87.15     133.24

Delta     73.73    102.60    46.50      45.68

Rank          2         1        3          4

Graph window output

Interpreting the results

Each linear model analysis provides the coefficients for each factor at the low level, their p-values and an analysis of variance table. Use the results to determine whether the factors are significantly related to the response data and each factor's relative importance in the model.

The order of the coefficients by absolute value indicates the relative importance of each factor to the response; the factor with the biggest coefficient has the greatest impact. The sequential and adjusted sums of squares in the analysis of variance table also indicate the relative importance of each factor; the factor with the biggest sum of squares has the greatest impact. These results mirror the factor ranks in the response tables.

In this example, you generated results for S/N ratios and means. For S/N ratios, all the factors and the interaction terms are significant at an a-level of 0.10. For means, core material (p=0.045), core diameter (p=0.024), and the interaction of material with diameter (p=0.06) are significant because their p-values are less than 0.10.  However, because both factors are involved in the interaction, you need to understand the interaction before you can consider the effect of each factor individually.

The response tables show the average of each response characteristic (S/N ratios, means) for each level of each factor. The tables include ranks based on Delta statistics, which compare the relative magnitude of effects. The Delta statistic is the highest minus the lowest average for each factor. Minitab assigns ranks based on Delta values; rank 1 to the highest Delta value, rank 2 to the second highest, and so on. Use the level averages in the response tables to determine which level of each factor provides the best result.

In this example, the ranks indicate that core diameter has the greatest influence on both the S/N ratio and the mean. For S/N ratio, cover thickness has the next greatest influence, followed by core material and dimples. For means, core material has the next greatest influence, followed by dimples and cover thickness.

For this example, because your goal is to increase ball flight distance, you want factor levels that produce the highest mean. In Taguchi experiments, you always want to maximize the S/N ratio. The level averages in the response tables show that the S/N ratios and the means were maximized when the core was liquid, the core diameter was 118, there were 392 dimples, and the cover thickness was .06. Examining the main effects plots and interaction plots confirms these results. The interaction plot shows that, with the liquid core, the flight distance is maximized when the core diameter is 118.   

Based on these results, you should set the factors at:

Material

Liquid

Diameter

118

Dimples

392

Thickness

.06

Next, you may want to use Predict Results to see the predicted S/N ratios and means at these factor settings. See Example of predicting results.