Calculations - Process Report
main topic
  

See the notation used in the equations below:

 

Unbiasing constants for estimating long-term and short-term standard deviation

 

c4(LT)j

=

where:

 

c4(ST)j

=

where:

Short-term standard deviation with unbiasing constant (default)

Cum SD(ST)j

=

 

where:

Short-term standard deviation without unbiasing constant

Cum SD(ST)j

=

where:

Long-term standard deviation without unbiasing constant (default)

Cum SD(LT)j

=

where:

Long-term standard deviation with unbiasing constant

Cum SD(LT)j

=

 

where:

Long-term process mean

mLT

=

where:

mLT  = cmLT,K

Long-term process standard deviation

sLT

=

Cum SD(LT)K

 

 

Short-term process mean

mST

 

=

 

T

If target given

(USL +LSL)

2

If no target given, both specs given

mLT

If no target given, only 1 spec given

Short-term process standard deviation

sST

=

Cum SD(ST)K

 

 

(See Centering values for short term statistics)

Capability statistics

CCpk

=

min

{

USL - mST

 ,

mST - LSL

}

3sST

3sST

 

Cp

=

(USL - LSL) / (6sST)

 

Cpk

=

min

{

USL - mLT

 ,

mLT - LSL

}

3sST

3sST

 

CPL

 

=    (mST - LSL) / (3sST)  

 

CPU

 

=    (USL - mST) / (3sST)   

 

Pp

=

(USL - LSL) / (6sLT)

 

Ppk

=

min

{

USL - mLT

 ,

mLT - LSL

}

3sLT

3sLT

 

PPL

=

(mLT - LSL) / (3sLT)

 

PPU

=

(USL - mLT) / (3sLT)

 

Degrees of freedom

df(LT)j

=

 

df(ST)j

=

 

Proabilities

P.LSL(LT)j

=

1 - F(Z.LSL(LT)j )

 

P.LSL(ST)j

=

1 - F(Z.LSL(ST)j )

 

P.USL(LT)j

=

1 - F(Z.USL(LT)j )

 

P.USL(ST)j

=

1 - F(Z.USL(ST)jj )

 

P.Total(LT)j

=

P.USL(LT)j + P.LSL(LT)j

 

P.Total(ST)j

=

P.USL(ST)j + P.LSL(ST)j

 

Z bench statistics

Z.Bench(LT)j

=

Fimage\MINUSONE.gif(P.Total(LT)j)

 

Z.Bench(ST)j

=

Fimage\MINUSONE.gif(P.Total(ST)j)

 

Z.LSL(LT)j

=

(mLT - LSL) / Cum SD(LT)j

 

Z.LSL(ST)j

=    (mST - LSL) / Cum SD(LT)j

 

Z.USL(LT)j

=

(USL - mLT) / Cum SD(LT)j

 

Z.USL(ST)j

=    (USL - mST) / Cum SD(LT)j  

 

Z.Shiftj

=

Z.Bench(ST)j - Z.Bench(LT)j

 

Note

Cp, Cpk, and CCpk represent the potential capability of the process. Therefore, these formulas use short-term variability.

Pp and Ppk represent the actual process performance. Therefore, these formulas use long-term variability.