Example of a stability study
main topic
     interpreting results     session command    
see also 

You want to determine the shelf life for pills that contain a new drug. The concentration of the drug in the pills decreases over time. You want to determine when the pills reach 90% of the intended concentration.

You create 5 batches of the medication and test one pill from each batch at 9 different times. In Example of Creating a Stability Study Worksheet, you created a data collection worksheet for this study.  

1    Open the worksheet SHELFLIFE.MTW.

2    Choose Stat > Regression > Stability Study > Stability Study.

3    In Response, enter Drug%.

4    In Time, enter Month.

5    In Batch, enter Batch.

6    In Lower spec, type 90.

7    Click Graphs.

8    Under Shelf life plot, in the second drop-down list, choose No graphs for individual batches.

9    Under Residual Plots, choose Four in one.

10  Click OK in each dialog box.

Session window output

Stability Study: Drug% versus Month, Batch

 

 

Method

 

Rows unused  5

 

 

Factor Information

 

Factor  Type   Number of Levels  Levels

Batch   Fixed                 5  1, 2, 3, 4, 5

 

 

Model Selection with α = 0.25

 

Source       DF   Seq SS   Seq MS  F-Value  P-Value

Month         1  122.460  122.460   345.93    0.000

Batch         4    2.587    0.647     1.83    0.150

Month*Batch   4    3.850    0.962     2.72    0.048

Error        30   10.620    0.354

Total        39  139.516

 

Terms in selected model: Month, Batch, Month*Batch

 

 

Model Summary

 

       S    R-sq  R-sq(adj)  R-sq(pred)

0.594983  92.39%     90.10%      85.22%

 

 

Coefficients

 

Term             Coef  SE Coef  T-Value  P-Value   VIF

Constant      100.085    0.143   701.82    0.000

Month        -0.13633  0.00769   -17.74    0.000  1.07

Batch

  1            -0.232    0.292    -0.80    0.432  3.85

  2             0.068    0.292     0.23    0.818  3.85

  3             0.394    0.275     1.43    0.162  3.41

  4            -0.317    0.292    -1.08    0.287  3.85

  5             0.088    0.275     0.32    0.752     *

Month*Batch

  1            0.0454   0.0164     2.76    0.010  4.52

  2           -0.0241   0.0164    -1.47    0.152  4.52

  3           -0.0267   0.0136    -1.96    0.060  3.65

  4            0.0014   0.0164     0.08    0.935  4.52

  5            0.0040   0.0136     0.30    0.769     *

 

 

Regression Equation

 

Batch

1      Drug% = 99.853 - 0.0909 Month

 

2      Drug% = 100.153 - 0.1605 Month

 

3      Drug% = 100.479 - 0.1630 Month

 

4      Drug% = 99.769 - 0.1350 Month

 

5      Drug% = 100.173 - 0.1323 Month

 

 

Fits and Diagnostics for Unusual Observations

 

Obs   Drug%     Fit   Resid  Std Resid

 11  98.001  99.190  -1.189      -2.21  R

 43  92.242  92.655  -0.413      -1.47     X

 44  94.069  93.823   0.246       0.87     X

 

R  Large residual

X  Unusual X

 

 

Shelf Life Estimation

 

Lower spec limit = 90

Shelf life = time period in which you can be 95% confident that at least 50% of response is

     above lower spec limit

 

Batch    Shelf Life

1            83.552

2            54.790

3            57.492

4            60.898

5            66.854

Overall      54.790

Graph window output

Interpreting the results

For the pill data, the p-value for the Month by Batch interaction (Month*Batch) is 0.048. Because the p-value is less than the a-level of 0.25, the model cannot be reduced.

Both Month and the Month by Batch interaction are significant. Thus the regression equations for each batch have different intercepts and slopes. Batch 3 has the steepest slope, -0.1630, which indicates that, each month, the concentration of medication (Drug%) for Batch 3 decreases 0.163 percentage points. Batch 4 has the smallest intercept, 99.769, which indicates that Batch 4 had the lowest concentration at time zero.

Minitab displays the shelf life estimates for each batch. The shortest shelf life estimate is 54.79 months, so the overall shelf life for the product is estimated as 54.79 months.

The residuals appear to be reasonably normal and randomly scattered about zero. There are more points on the right side of the residuals versus fits plot than on the left. This pattern occurs because more observations were collected earlier in the study, when drug concentrations were high.