Poisson 回归 - 编码
主题
    
另请参见 

统计 > 回归 > Poisson 回归 > 拟合 Poisson 模型 > 编码

用于:

·    指定类别预测变量的编码方案

·    指定每个类别预测变量的参考水平

·    标准化连续预测变量

标准化连续预测变量可以提高特定条件下的模型解释。您可以使用以下方法标准化连续预测变量:

·    通过减去均值使连续预测变量居中:此方法有助于减小多重共线性,可提高系数估计的精度。当您的模型包含高度相关的预测变量、更高阶项及交互作用项时,此方法很有用。每个系数表示预测变量中每单位变化(使用原始度量尺度)所能在响应中产生的预期变化。

·    通过除以标准差调整连续预测变量尺度:此方法允许您比较系数的大小,因为它们使用可比较的尺度。当您想要知道哪些预测变量具有更大效应,同时控制尺度中的差异时,此方法很有用。但是,每个系数表示预测变量中一个标准差的变化所能在响应中产生的预期变化。

对话框项

编码类别预测变量:当您具有类别预测变量时使用。要执行分析,Minitab 需要记录类别数据。根据您是要将水平与总体均值进行比较,还是与参考水平的均值进行比较作出决策。

(-1, 0, +1):选择此项可估计每个水平均值与总体均值之间的差异。

(1, 0):选择此项可估计每个水平均值与参考水平均值之间的差异。

类别预测变量参考水平:如果选择 (1, 0) 编码方案,则参考水平表在对话框中将变为活动状态。Minitab 将非参考水平的均值与参考水平的均值进行比较。更改参考水平不会影响结果的一般解释,但它可以使结果更有意义。有关为什么要更改参考水平的信息,请参见解释参数估计

类别预测变量:显示模型中所有类别预测变量的名称。此列不接受任何输入。

参考水平:为每个类别预测变量选择一个参考水平。

标准连续预测变量:用于控制 Minitab 是否可以标准化连续预测变量。标准值仅用于拟合模型,并且不存储在工作表中。

不标准化:选择此项可对连续预测变量使用原始数据。

减去均值,然后除以标准差:选择此项可使预测变量居中,同时将其置于可比较尺度上。

减去均值:选择此项可使预测变量居中。

除以标准差:选择此项可对所有预测变量使用可比较尺度。

减去指定值,然后除以另一个值:选择此项可以指定值,而不是样本中的均值和标准差估计值。

连续预测变量:显示模型中所有连续预测变量的名称。此列不接受任何输入。

减去:键入要从每个连续预测变量中减去的值。

除以:键入 Minitab 使用其去除相减结果的值。

指定要编码为 -1 和 +1 的低水平和高水平:选择此项可按线性转换数据。落于您指定的值和值之间的所有数据值都将被编码为落于 -1 和 +1 之间。设计试验 (DOE) 使用此方案。

连续预测变量:显示模型中所有连续预测变量的名称。此列不接受任何输入。

低:键入要编码为 -1 的值。默认值为样本中的最小值。

高:键入要编码为 +1 的值。默认值为样本中的最大值。