Acceptance Sampling by Attributes - Compare

User Defined Plans - Probability of Acceptance Table

  

The probability of accepting lots at the AQL should be close to 1 - image\alpha.gif. The probability of accepting lots at the RQL should be close to image\beta.gif. The probability of rejecting is simply 1 minus the probability of accepting.

Example Output

Compare User Defined Plan(s)

 

 Sample  Acceptance    Percent  Probability  Probability

Size(n)   Number(c)  Defective    Accepting    Rejecting    AOQ      ATI

    150          10          2        1.000        0.000  1.988    155.9

    150          10          5        0.868        0.132  4.313   3435.6

 

    200          10          2        0.997        0.003  1.979    262.8

    200          10          5        0.583        0.417  2.892  10539.9

 

    250          10          2        0.987        0.013  1.955    566.7

    250          10          5        0.291        0.709  1.440  17799.6

 

 

 Sample  Acceptance         At Percent

Size(n)   Number(c)   AOQL   Defective

    150          10  4.355       5.369

    200          10  3.254       4.027

    250          10  2.595       3.222

 

Accept lot if defective items in n sampled ≤ c;  Otherwise reject.

Interpretation

For the grocery bags, the probability of accepting a lot at the AQL (2%) at sample sizes of 150, 200, and 250 is 1.000, 0.997, and 0.987, respectively. The probability of accepting a lot at the RQL (5%) at sample sizes of 150, 200, and 250 is 0.868, 0.583, and 0.291. Here we see that the probability of accepting lots with a quality level at the RQL (5%) increases beyond the consumer's risk (0.10) as the sample size decreases.

At the AQL, the probability of rejecting at the various sample sizes is 0.000, 0.003, and 0.013; and at the RQL, the probability of rejecting is 0.132, 0.417, and 0.709, depending on the sample size.