Acceptance Sampling by Variables - Compare

User-Defined Plans - Probability of Acceptance Table

  

The probability of accepting lots at the AQL should be close to 1 - image\alpha.gif. The probability of accepting lots at the RQL should be close to image\beta.gif. The probability of rejecting is simply 1 minus the probability of accepting.

Example Output

Compare User Defined Plan(s)

 

 

 Sample     Critical   Defectives  Probability  Probability

Size(n)  Distance(k)  Per Million    Accepting    Rejecting    AOQ     ATI

    100      3.44914          100        0.854        0.146   83.0   612.3

    100      3.44914          600        0.224        0.776  130.8  2815.1

 

    150      3.44914          100        0.899        0.101   86.1   500.1

    150      3.44914          600        0.172        0.828   98.8  3007.3

 

    200      3.44914          100        0.928        0.072   87.6   444.7

    200      3.44914          600        0.135        0.865   76.3  3142.0

 

 

Sample     Critical     Maximum         At Defectives

  Size  Distance(k)  StDev(MSD)   AOQL    Per Million

   100      3.44914   0.0027533  145.6          369.7

   150      3.44914   0.0027533  138.5          288.9

   200      3.44914   0.0027533  136.7          256.4

 

Z.LSL = (mean - lower spec)/standard deviation

Z.USL = (upper spec - mean)/standard deviation

Accept lot if standard deviation ≤ MSD, Z.LSL ≥ k and Z.USL ≥ k; otherwise reject.

Interpretation

For the camera data, the probability of accepting a lot at the AQL (100 defectives per million) at sample sizes of 100, 150, and 200 is 0.854, 0.899, and 0.928, respectively, which are all lower than 1 - producer's risk of 0.95. The probability of accepting a lot at the RQL (600 defectives per million) at sample sizes of 100, 150, and 200 is 0.224, 0.172, and 0.135, respectively, which is much higher than the consumer's risk of 0.10.

In this case, at the AQL, the probability of rejecting at the various sample sizes is 0.146, 0.101, and 0.072; and at the RQL, the probability of rejecting is 0.776, 0.828, and 0.865, depending on the sample size.