|
Individual Distribution IdentificationData Fitted with 14 Distributions and 2 Transformations - Maximum Likelihood Estimates |
Maximum likelihood (ML) estimates are calculated by maximizing the likelihood function for each distribution being considered. For each set of distribution parameters, the likelihood function describes the chance that the true distribution has these parameters based on the sample.
Example Output |
ML Estimates of Distribution Parameters
Distribution Location Shape Scale Threshold Normal* 50.78200 2.76477 Box-Cox Transformation* 0.00000 0.00000 Lognormal* 3.92612 0.05368 3-Parameter Lognormal 1.69295 0.46849 44.74011 Exponential 50.78200 2-Parameter Exponential 4.06326 46.71873 Weibull 17.82470 52.13681 3-Parameter Weibull 1.47605 4.53647 46.66579 Smallest Extreme Value 52.22257 2.95894 Largest Extreme Value 49.50370 2.16992 Gamma 351.04421 0.14466 3-Parameter Gamma 2.99218 1.63698 45.88376 Logistic 50.57182 1.59483 Loglogistic 3.92259 0.03121 3-Parameter Loglogistic 1.54860 0.32763 45.46180 Johnson Transformation* 0.02897 0.97293
* Scale: Adjusted ML estimate |
Interpretation |
For the calcium data, the shape, scale, and threshold parameter estimates for the 3-parameter Weibull distribution are 1.47605, 4.53647, and 46.66579.