Example of a stability study with a random batch factor
main topic
     interpreting results     session command    
see also 

In Example of a stability study, you determined the shelf life of a new medication using the default method, which treats batch as a fixed factor. If you choose batches randomly from a larger population of possible batches, then you can analyze batch as a random factor.

For this example, suppose that you want to calculate shelf life for a medication. You randomly select 8 batches of medication from a larger population of possible batches.

1    Open the worksheet SHELFLIFERANDOM.MTW.

2    Choose Stat > Regression > Stability Study > Stability Study.

3    In Response, enter Drug%.

4    In Time, enter Month.

5    In Batch, enter Batch.

6    In Lower spec, type 90.

7    Click Options.

8    Choose Batch is a random factor.

9    Click OK and then click Graphs.

10  Under Residual Plots, choose Four in one.

11  Click OK in each dialog box.

Session window output

Stability Study: Drug% versus Month, Batch

 

 

Factor Information

 

Factor  Type    Number of Levels  Levels

Batch   Random                 8  1, 2, 3, 4, 5, 6, 7, 8

 

 

Model Selection with α = 0.25

 

Model                    -2 LogLikelihood  Difference  P-Value

Month Batch Month*Batch           128.599

Month Batch                       133.424     4.82476    0.059

 

Terms in selected model: Month, Batch, Month*Batch

 

 

Variance Components

 

Source            Var  % of Total    SE Var   Z-Value  P-Value

Batch        0.527403      72.91%  0.303847  1.735755    0.041

Month*Batch  0.000174       0.02%  0.000142  1.224106    0.110

Error        0.195740      27.06%  0.036752  5.325920    0.000

Total        0.723317

 

 

Model Summary

 

       S    R-sq  R-sq(adj)

0.442425  96.91%     96.87%

 

 

Coefficients

 

Term            Coef   SE Coef    DF     T-Value  P-Value

Constant  100.060247  0.268705  7.22  372.380078    0.000

Month      -0.138766  0.005794  7.22  -23.950307    0.000

 

 

Random Effect Predictions

 

Term              BLUP     StDev     DF    T-Value  P-Value

Batch

  1           1.359433  0.313987  12.45   4.329582    0.001

  2           0.395376  0.313987  12.45   1.259213    0.231

  3           0.109150  0.313987  12.45   0.347625    0.734

  4          -0.409321  0.313987  12.45  -1.303625    0.216

  5          -0.135643  0.313987  12.45  -0.432002    0.673

  6          -1.064735  0.313987  12.45  -3.391015    0.005

  7           0.049419  0.313987  12.45   0.157391    0.877

  8          -0.303678  0.313987  12.45  -0.967169    0.352

Month*Batch

  1           0.006281  0.008581  10.49   0.731927    0.480

  2           0.019905  0.008581  10.49   2.319532    0.042

  3          -0.013831  0.008581  10.49  -1.611737    0.137

  4           0.003468  0.008581  10.49   0.404171    0.694

  5           0.001240  0.008581  10.49   0.144454    0.888

  6           0.000276  0.008581  10.49   0.032141    0.975

  7          -0.010961  0.008581  10.49  -1.277269    0.229

  8          -0.006378  0.008581  10.49  -0.743220    0.474

 

 

Marginal Fits and Diagnostics for Unusual Observations

 

Obs       Drug%        Fit       DF     Resid  Std Resid

 10  101.564000  99.643950  7.04383  1.920050    2.37526  R

 31  100.618000  98.811354  7.05287  1.806646    2.21379  R

 55   98.481000  96.729866  8.87399  1.751134    2.03349  R

 

R  Large residual

 

 

Shelf Life Estimation

 

Lower spec limit = 90

Shelf life = time period in which you can be 95% confident that at least 95% of response is

     above lower spec limit

 

Shelf life for all batches = 53.1819

Graph window output

Interpreting the results

In the model selection process, Minitab compares the full model, "Month Batch Month*Batch", to the model that does not include the interaction term. Because the p-value for that comparison (0.059) is less than a (0.25), the interaction term cannot be removed from the model. The final model includes Month, Batch, and the Month by Batch interaction (Month*Batch).

When the batch factor is random, Minitab calculates shelf life based on the 95th percentile rather than the 50th percentile. (You can change this setting, and the value of alpha, in the Options subdialog box.) Shelf life is the time at which you can no longer be 95% confident that at least 95% of the response is within your specification limits. The shelf life for the present data is approximately 53.18 months.

The coefficients table shows the estimated coefficients for the fixed effects in the model. These coefficients are the intercept (Constant) and the slope (Month) for the marginal fitted equation (shown below), which predicts the fitted value for any random batch.

Drug% = 100.06 - 0.13877 Month

The table of random effect predictions shows the predicted values for the random terms. With these predicted values, you can determine the intercept and the slope for the conditional fitted equations, which predict the fitted values for the specific batches. (You can view these equations using Minitab's Predict feature.) For example, the intercept for Batch 1 is 101.359, which is equal to the Constant (100.06) plus the best linear unbiased predicted value (BLUP) for Batch 1 (1.359). The slope for Batch 1 is - 0.13248, which is equal to Month (-0.138766) plus the BLUP for Batch 1 by Month (0.006281).

The marginal residual plots for Drug% (above) show that the marginal residuals may not be normally distributed with constant variance. The histogram is flatter than the normal distribution, and the points in the normal probability plot do not follow the line well. One reason for the nonnormal behavior of the marginal residuals is that, when the final model includes the batch by time interaction, the variance of the marginal residuals depends on the time variable and may not be constant.

You can use the conditional residuals to check the normality of the error term in the model.

1    Press CTRL+E or choose Stat > Regression > Stability Study > Stability Study.

2    Click Graphs.

3    In Residuals for plots, choose Conditional regular.

4    Click OK in each dialog box.

Graph window output

Interpreting the results

The conditional residuals appear to be normally distributed. The full model appears to fit the data well.