本帖最后由 M.X 于 2020-3-11 17:19 编辑
5 SPC自身有哪些缺陷?
5.1 自相矛盾的逻辑为了简化论述,我们以最初休哈特制定的判异准则,是否超出3σ控制限这一个准则展开讨论,暂不考虑其它准则。应用SPC时,如果数据处于3σ控制限以内,通常认为过程变化通常只是普通原因引起的,没有特殊原因出现,无需改善;如果数据落在3σ控制限以外,则表明过程中有可能了出现影响产 品质量特性的特殊原因,需要确认是否出现特殊原因,如果有则要采取措施进行改善。 · 因为按照休哈特理论,落在3σ以外的是小概率事件,要进行调查。同样按照分布概率,落在3σ以外也可能是正常的分布。 · 设备是多种多样的,有的设备稳定性足够高,就像 戴明的漏斗实验一样,不改变漏斗高度,小球落点的离散程度不会改变,小球出现在4σ(或者5 σ)内也可能是普通原因。 · 但现在大多数的控制限是设置为3 σ。 对于稳定性很好的设备,如果数据超过3σ控制限就报警,那么工厂花费了大量时间和资源记录跟踪数据,得到的却是大量的假报警,工程师为此要疲于奔命,说是误入歧途都不为过,谈何帮助工厂改善 质量?每天都在玩狼来的游戏? 根据下图,如果设备或制造系统稳定性很好,在4σ范围内都是普通原因,这时3σ为控制限,那么误报警率将高达(0.27-0.0063)/0.27=97.7%。 (当然,也可以把控制限设置到4σ范围以减少报警,问题是即使你掌握这个知识,但你的客户可能不同意你的要求,你购买的软件也可能没法设置,因为不是所有的SPC软件都有这个功能。同样,如果把控制限扩大,按照SPC理论,也会有增加漏报的 风险。)
真正让生产员工迷惑的地方是,按照休哈特的理论,超出控制限有可能是普通原因也可能是特殊原因,让生产员工去调查,找到了就说是特殊原因,找不到,难道就是普通原因?
5.2 普通原因与特殊原因的划分SPC的目的是通过控制图来探测制造过程是否出现了特殊原因,如果出现,那么先要加以分析,根据分析结果再决定是否进行 预防和改善。 一般认为,特殊原因对过程影响较大或者特殊原因整改 成本相对较低,但这都不是绝对的。目前也没有任何客观的真实数据来证实这一点,实际上只是人为地把分析找到的原因归到特殊原因而已。
假设我们还是按照普通原因和特殊原因来划分,在实际生产中,要获得更高的经济合理性,不一定是通过改进或消除特殊原因,更可以改进普通原因。比如说,企业在考虑成本的前提下,同时确保设备具有更小的波动性(普通原因),找提供设备的供应商来升级改造设备,因设备供应商比客户使用设备的人员更知道如何来提高设备的性能,这才是符合亚当斯密的劳动分工理论,专业分工,专业的人做专业的事。
从休哈特发明控制图100年来,社会化大生产已经发生了翻天覆地的变化,一台普通的设备通常是很多专业企业合作共同完成的,供应链不仅横向很广,纵向也很深,设备的精度和稳定程度在大踏步前进,留给客户操作人员改进的机会越来越少。通常而言,与其自己改进设备提高过程稳定性,不如找供应商直接升级设备或直接购买高性能设备更具有经济合理性。
当今时代企业的 质量管理水平和产品的质量控制水平,也同样比100年前相比有了质的飞跃,主要的贡献来自于设备、工艺和配方等方面的进步,还有自动化监测手段的提升,而这些进步和提升大部分来自于普通原因,而不是依靠SPC不断探测特殊原因并改善取得的,这一点是毋庸置疑的。
我们几乎看遍能用谷歌搜索到的所有SPC视频课程,大部分讲师在介绍用SPC查找特殊原因时,给出的例子大都是换操作员工了,换原材料了,机器润滑不好了,螺丝松了,设备磨损了等等,这些的确会导致一些 质量问题,也不是不重要,问题是企业有比SPC更加前置和高效的方法来预防这些问题,如,合格供应商名录,设备点检、维护和保养,员工上岗 培训,分层审核, 防呆等等。
实际生产过程中普通原因和特殊原因是会相互转换,不是一成不变的,这也是业界的普遍认知。 另外,普通原因和特殊原因,本就没有天然的界限。人为分为两种原因,把简单的问题复杂化了,然后再按照所谓的分类去解决所谓的特殊原因,这是从推广SPC的角度看问题,而不是从解决问题的角度看问题?
5.3 戴明和AIAG制定的判异规则会增加误报率在控制图中,如果7点(注:也有是6点之说)或更多的点连续上升或下降,人工判断或SPC软件将发出警报。现在已有多人(Davis, Woodall, Walker, Philpot, Clement, etc. )要求取消戴明和AIAG制定的这个规则,因为这个规则在有些有意为之的过程里是无效的,虽然直觉上觉得合理,但结果只会大幅增加误报率。
内容来源《False Signal Rates for the Shewhart Control Chartwith Supplementary Runs Tests》&《Performance of the Control Chart Trend Rule Under Linear Shift》
5.4 ASQ推荐的SPC判断规则也有无效的ASQ推荐的用移动极差图来探测变异性中的变化这一 标准做法也被证明是无效的。遗憾的是,该规则还是 CQE考试的内容之一。
内容来源《Design Strategies for Individuals and MOVing RangeControl Charts》&《A Control Chart for the Preliminary Analysis of Individual Observations》
6 实际应用中SPC有哪些硬伤?除了上面说的自身缺陷之外,SPC在实际应用中也有一些硬伤。
我们首先以公差限范围和控制限范围的三种位置关系来分别讨论:
公差限范围远大于控制限范围: 随着当代生产设备、检测设备以及工艺水平等方面的不断进步,制造型企业对产品质量特性的控制能力已经远远超出100年前的水平。客户要求供应商的过程能力 CPK在1.67以上,甚至2已非罕见,那么就意味着质量水平相当于5σ-6σ。
人工判断或SPC软件报警,但产品是合格的,质量人员如果这时花费精力去研究这个报警,让产品在合格的基础之上好上加好不是不可以,前提是没有其它质量不合格的事情发生,但在日常生产中比这严重和重要的事多得多,这么做从问题解决角度完全与二八定律不符。
这时控制图不仅没有好处,还帮倒忙,对于一个有着大量质量控制点的企业,质量人员还得费劲劳神不让这些不重要的事情干扰自己,还得从大量的报警中找出哪个是真正超过公差限的产品而不是单单超出控制限的产品。
世界著名500强公司施耐德,顶级电工企业,在华工厂应用控制图监控生产过程中的若干关键质量特性,但该控制图中只有公差限,没有控制限。因为如果设置了控制限,那么系统会经常报警,使本就繁忙的工程师们疲于奔命。他们也知道,因为是Xbar值,不是单点值,即使Xbar值在控制限内,产品也有不合格的风险。但是不取消这个报警,每天就不用做其它事情了,因为公差限远大于控制限,风险程度不高,就索性取消控制限。
请问,这些控制图在企业实际应用中到底起了什么作用?毫不夸张地说,它的消极作用之一就是浪费了资源。
公差限范围小于控制限范围: 通常理想状态,使用SPC时,要求过程稳定且CPK大于1。 项目在量产前策划阶段,对于具体的质量特性,企业工程技术人员通常预先评估采用哪种探测手段,并在过程开发时最终落实。比如可以用GO/NO GO检具100%检验或设计防错装置识别等,当然也可以使用控制图。 还有人会说,如果过程能力不足或者过程不稳定,通过控制图报警,这不是很好的机会改进产品质量吗?
未必,举个例子,公司在项目策划时选择设备有两个方案。500万的注塑机可以完全保证产品质量,50万的注塑机则需要加人工100%对质量特性进行检验,公司根据客户的采购量,通过成本评估确认50万注塑机+人工100%检验这个选项在利润角度更合理。
当今是专业化大分工时代,几个质量人员+设备工程师+一线操作工仅依靠一个SPC 工具就可以把50万元的注塑机改进达到500万元注塑机的水平可能性很小。那些专业生产注塑机的企业可能都做不到的事,非专业人员就更实现不了;即使企业内部通过改进能够实现,成本上的花费很可能是不合理的。
这里不是反对持续改进,持续改进是一个企业永恒的主题,但我们反对的是一谈到质量控制,言必称SPC。
公差限范围略大于控制限范围: 这时的CPK大于1,可能有人会说,这种情况下SPC控制图最有用,但其实给一线操作员工和质量人员带来的困扰同样也不少,为什么?
如果控制图报警,一线操作员工也不知道产品是否合格,有时还要在控制图的边上再做一个单值描点图( 日本一些企业的作法)。 有些控制图上加上了公差限,的确是有所改善,但还是有问题,因为在控制图上显示的是X的平均值,当X平均值在公差限以内时,产品还是有可能不合格的。(当然,这时R图往往会报警,但操作员工还得另行计算一下,确认产品是否超差,因为控制限报警和产品不合格是两个严重度不一样的事情,对于一线工人来说,首要任务是产品合格然后才是持续改进。)
其它因素还有:
无法满足现代企业的激烈竞争 现在的企业面临着越来越激烈的竞争。成本控制决定着企业的利润以及生存空间。 控制图需要持续不断地记录数据。一个控制图(均值极差控制图)只能监控一个质量特性,随着产品复杂度的增加以及供需链的不断变化,一个产品上会有多个关键质量特性,一个工厂有上万个料号是非常普遍的现象,那么可以想象,使用控制图对这些产品的大量质量特性进行监控,需要记录的数据以及需要付出的努力远远超出了企业所能承受的能力。
笔者曾经 工作过的一家公司,每年都会进行供应商的整合(最近10年以来已经是普遍的现象),其中一个很典型的中小规模供应商,单单给笔者公司提供的常用活跃料号就有5000多个,其中一半以上是由数量不等的子零件组成的组装件(一个组件包含的子部件从10个到100个不等)。有外观,性能,关键尺寸等多个关键质量特性需要控制。如果使用控制图进行监控,那么需要做的控制图要多达几万个,效果如何不说,单是工作量已经将企业压垮。
更甚者,有些使用模具生产的产品,为了提高效率与降低成本,会以多模多穴的方式进行生产。如某公司一塑料产品有4个关键尺寸,该产品一共有2个模具,每个模具64穴,这些关键尺寸关系到客户产品的密封性能,塑料产品本身价值不高,但是一旦质量不合格,客户的损失将是非常巨大的。如果要取得客户订单,客户一定要求供应商签署质量连带责任协议。
如果使用控制图,每一次都要等到注塑机生产5个产品以后才能检验关键尺寸并记录,如果现场是纸质的控制图,操作工人还得计算这五个产品平均值和极差值,一个注塑工位就有4X64=258张控制图。两个模具,那么意味着要做2X4X64=512个控制图。如果这个公司有100个类似产品,那么意味着要有5万个控制图在生产现场。 每次注塑的时间间隔才几分钟,有时间记录吗? 用SPC软件能解决这些问题吗? 对于注塑产品,不仅要确保首件合格和末件合格,还要确保如何及时发现产品尺寸的变化,以便能及时清理冷却管路和维修模具,这对企业是一个极大的挑战。 如果您是这家企业的质量负责人,你会采用控制图来监控关键尺寸吗?您觉得控制图管的住质量吗?
对于芯片行业也类似,这个行业的数据量更大,SPC每天可能会发出非常多的报警,导致质量人员根本没有时间开展调查研究,很多质量人员的直接做法就是关闭这些报警邮件。不要指责这些员工,当你每天收到50份 SPC报警时,你会怎么做?
繁杂的系统,普通企业难于掌握 · 计算过程能力时,所采集质量特性的检测数据如果不是 正态分布,需要做变换。 · 不同的过程,需要不同的SPC工具。 · 单一质量特性的数据是否独立,也会影响到使用效果,化工行业这个问题会比较突出,还要学会如何判断数据是否独立。
有办法解决这些问题吗?有。 这些问题难吗?看对谁而言。
问题的关键是,所有的企业都投入这么多的资源去研究这些,投入产出比对每个企业都合适吗?中国的中小企业有那么多资源投入去推广和研究吗?
再完美的设想,如果不能够满足实际生产现场的需求,那么也只能放在 实验室里观赏。不能够为实际生产服务,那么也就失去了它的价值。
未完待续
|