通过含有响应的重复或仿行测量值的试验,可以分析响应数据中的变异性,进而确定产生更少变异结果的因子设置。Minitab 计算和存储重复或仿行响应的标准差 (s),并对它们进行分析以检测各个因子设置之间的差异或离散效应。
例如,您进行了一项含有仿行的喷雾干燥试验,并发现干燥温度和喷雾器速度的两个设置会产生所需的颗粒大小。通过以不同的因子设置分析颗粒大小中的变异性,可以发现产生颗粒的设置的颗粒大小具有极小的变异性。您要使用多响应优化来寻找产生的所需颗粒大小具有极小变异量的设置。
创建设计后,可以分两步分析变异性:
1 预处理响应 - 首先,应计算和存储重复或仿行响应的标准差和计数,或者指定已存储在工作表中的标准差。可以使用其他 DOE 工具(如“分析变异性”、“分析因子设计”、“等值线图”和“响应优化”)分析存储的标准差并按照响应变量绘制其图形。
2 分析变异性 - 其次,将线性模型拟合到在第一步中存储的标准差的对数值,以确定显著离散效应。拟合模型后,便可以使用其他工具(如等值线图和曲面图以及响应优化)来更好地了解结果。还可以存储权重(从模型中计算得出),以便在分析因子设计中分析原始响应的位置(均值)效应时执行加权回归。